A comparison of GOCE and drifter-based estimates of the North Atlantic steady-state surface circulation
نویسندگان
چکیده
Over the last decade, due to the Gravity Recovery And Climate Experiment (GRACE) mission and, more recently, the Gravity and steady state Ocean Circulation Explorer (GOCE) mission, our ability to measure the ocean’s mean dynamic topography (MDT) from space has improved dramatically. Here we use GOCE to measure surface current speeds in the North Atlantic and compare our results with a range of independent estimates that use drifter data to improve small scales. We find that, with filtering, GOCE can recover 70% of the Gulf Steam strength relative to the best drifterbased estimates. In the subpolar gyre the boundary currents obtained from GOCE are close to the drifter-based estimates. Crucial to this result is careful filtering which is required to remove small-scale errors, or noise, in the computed surface. We show that our heuristic noise metric, used to determine the degree of filtering, compares well with the quadratic sum of mean sea surface and formal geoid errors obtained from the error variancecovariance matrix associated with the GOCE gravity model. At a resolution of 100 km the North Atlantic mean GOCE MDT error before filtering is 5 Preprint submitted to International Journal of Applied Earth Observation and GeoinformationMarch 11, 2014 cm with almost all of this coming from the GOCE gravity model.
منابع مشابه
Influence of atmospheric circulation patterns on dust transport during Harmattan Period in West Africa
This study has used TOMS AI as well as the reanalysis dataset of thirty-four years (1979-2012) to investigate the influence of atmospheric circulation on dust transport during the Harmattan period in West Africa, using Aerosol Index (AI) data, obtained from various satellite sensors. Changes in Inter-Tropical Discontinuity (ITD), Sea Surface Temperature (SST) over the Gulf of Guinea, and North ...
متن کاملErrors of Mean Dynamic Topography and Geostrophic Current Estimates in China’s Marginal Seas from GOCE and Satellite Altimetry
The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and satellite altimetry can provide very detailed and accurate estimates of the mean dynamic topography (MDT) and geostrophic currents in China’s marginal seas, such as, the newest high-resolution GOCE gravity field model GOCONS-GCF-2-TIM-R4 and the new Centre National d’Etudes Spatiales mean sea surface model MSS_CNES_CLS_11 ...
متن کاملA reconstruction of large-scale circulation in the Pacific Ocean north of 10&N
A dynamically consistent steady state circulation pattern of the North Pacific (NP) ocean is presented. The fields describing oceanic state and atmospheric forcing are obtained by fitting a steady state large-scale circulation model to the 1.0 release of World Ocean Circulation Experiment hydrology, da Silva atmospheric climatologies, TOPEXPoseidon altimetry, and Marine Environmental Data Servi...
متن کاملEvaluation of GOCE-based global gravity field models over Japan after the full mission using free-air gravity anomalies and geoid undulations
The performance of Gravity field and steady-state Ocean Circulation Explorer (GOCE) global gravity field models (GGMs), at the end of GOCE mission covering 42 months, is evaluated using geoid undulations and free-air gravity anomalies over Japan, including six sub-regions (Hokkaido, north Honshu, central Honshu, west Honshu, Shikoku and Kyushu). Seventeen GOCE-based GGMs are evaluated and compa...
متن کاملSatellite gravity gradient grids for geophysics
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Applied Earth Observation and Geoinformation
دوره 35 شماره
صفحات -
تاریخ انتشار 2015